Login / Signup

Combined Metabolome and Transcriptome Analysis of Creamy Yellow and Purple Colored Panax notoginseng Roots.

Muhan HeGuanghui ZhangDongfang HuoSheng-Chao Yang
Published in: Life (Basel, Switzerland) (2023)
Panax notoginseng (Burk.) F.H. Chen is a species of the Araliaceae family that inhabits southwestern China, Burma, and Nepal. It is cultivated on a commercial scale in Yunnan province, China, owing to its significance in traditional Chinese medicine. Panax notoginseng roots are usually yellow-white (HS); however, purple roots (ZS) have also been reported. The majority of P. notoginseng research has concentrated on the identification and production of natural chemicals in HS; however, there is little to no information about the composition of ZS. Using UPLC-MS/MS, we investigated the global metabolome profile of both ZS- and HS-type roots and discovered 834 metabolites from 11 chemical groups. There were 123 differentially accumulated metabolites (DAM) in the HS and ZS roots, which were classified as lipids and lipid-like molecules, polyketides, organoheterocyclic chemicals, and organooxygen compounds. We investigated the associated compounds in the DAMs because of the importance of anthocyanins in color and saponins and ginsenosides in health benefits. In general, we discovered that pigment compounds such as petunidin 3-glucoside, delphinidin 3-glucoside, and peonidin-3-O-beta-galactoside were more abundant in ZS. The saponin (eight compounds) and ginsenoside (26 compounds) content of the two varieties of roots differed as well. Transcriptome sequencing revealed that flavonoid and anthocyanin production genes were more abundant in ZS than in HS. Similarly, we found differences in gene expression in genes involved in terpenoid production and related pathways. Overall, these findings suggest that the purple roots of P. notoginseng contain varying amounts of ginsenosides and anthocyanins compared to roots with a creamy yellow color.
Keyphrases
  • ms ms
  • gene expression
  • single cell
  • dna methylation
  • mental health
  • rna seq
  • fatty acid
  • high resolution
  • health information
  • transcription factor
  • bioinformatics analysis
  • drug induced