Login / Signup

A molecular barcode and web-based data analysis tool to identify imported Plasmodium vivax malaria.

Hidayat TrimarsantoRoberto AmatoRichard D PearsonEdwin SutantoRintis NoviyantiLeily TriantyJutta MarfurtZuleima PavaDiego F EcheverryTatiana M Lopera-MesaLidia M MontenegroAlberto Tobón CastañoMatthew J GriggBridget BarberTimothy WilliamNicholas M AnsteySisay GetachewBeyene PetrosAbraham AseffaAshenafi AssefaAwab G RahimNguyen H ChauTran T HienMohammad Shafiul AlamWasif Ali KhanBenedikt LeyKamala ThriemerSonam WangchuckYaghoob HamediIshag AdamYaobao LiuQi GaoKanlaya SriprawatMarcelo U FerreiraMoses LamanAlyssa BarryIvo MuellerMarcus Vinícius Guimarães de LacerdaAlejandro Llanos-CuentasSrivicha KrudsoodChanthap LonRezika MohammedDaniel YilmaDhelio Batista PereiraFe Esperanza EspinoCindy S ChuIván D VélezChayadol Namaik-LarpMaria F VillegasJustin A GreenGavin C K W KohJulian C RaynerEleanor DrurySónia GonçalvesVictoria SimpsonOlivo MiottoAlistair MilesNicholas J WhiteFrancois H NostenDominic P KwiatkowskiRichard N PriceSarah Auburn
Published in: Communications biology (2022)
Traditionally, patient travel history has been used to distinguish imported from autochthonous malaria cases, but the dormant liver stages of Plasmodium vivax confound this approach. Molecular tools offer an alternative method to identify, and map imported cases. Using machine learning approaches incorporating hierarchical fixation index and decision tree analyses applied to 799 P. vivax genomes from 21 countries, we identified 33-SNP, 50-SNP and 55-SNP barcodes (GEO33, GEO50 and GEO55), with high capacity to predict the infection's country of origin. The Matthews correlation coefficient (MCC) for an existing, commonly applied 38-SNP barcode (BR38) exceeded 0.80 in 62% countries. The GEO panels outperformed BR38, with median MCCs > 0.80 in 90% countries at GEO33, and 95% at GEO50 and GEO55. An online, open-access, likelihood-based classifier framework was established to support data analysis (vivaxGEN-geo). The SNP selection and classifier methods can be readily amended for other use cases to support malaria control programs.
Keyphrases
  • data analysis
  • genome wide
  • high density
  • plasmodium falciparum
  • minimally invasive
  • public health
  • computed tomography
  • risk assessment