CUX1-related neurodevelopmental disorder: deep insights into phenotype-genotype spectrum and underlying pathology.
Henry OppermannElia Marcos-GrañedaLinnea A WeissChristina A GurnettAnne Marie JelsigSusanne H VinekeBertrand IsidorSandra MercierKari MagnussenPia ZacherMona HashimAlistair T PagnamentaSimone RaceSiddharth SrivastavaZoë FrazierRobert MaiwaldMatthias PergandeDonatella MilaniMartina RinelliJonathan LevyIlona KreyPaolo FontanaFortunato LonardoStephanie RileyJasmine KretzerJulia RankinLinda M ReisElena V SeminaMiriam S ReuterStephen W SchererMaria IasconeDenisa WeisChristina R FagerbergCharlotte Brasch-AndersenLars Kjaersgaard HansenAlma KuechlerNathan NobleAlice GardhamJessica TenneyGeetanjali RathoreStefanie Beck-WoedlTobias B HaackDespoina C PavlidouIsis AtallahJulia VodopiutzAndreas R JaneckeTzung-Chien HsiehHellen LesmannHannah KlinkhammerPeter M KrawitzJohannes R LemkeRami Abou JamraMarta NietoZeynep TümerKonrad PlatzerPublished in: European journal of human genetics : EJHG (2023)
Heterozygous, pathogenic CUX1 variants are associated with global developmental delay or intellectual disability. This study delineates the clinical presentation in an extended cohort and investigates the molecular mechanism underlying the disorder in a Cux1 +/- mouse model. Through international collaboration, we assembled the phenotypic and molecular information for 34 individuals (23 unpublished individuals). We analyze brain CUX1 expression and susceptibility to epilepsy in Cux1 +/- mice. We describe 34 individuals, from which 30 were unrelated, with 26 different null and four missense variants. The leading symptoms were mild to moderate delayed speech and motor development and borderline to moderate intellectual disability. Additional symptoms were muscular hypotonia, seizures, joint laxity, and abnormalities of the forehead. In Cux1 +/- mice, we found delayed growth, histologically normal brains, and increased susceptibility to seizures. In Cux1 +/- brains, the expression of Cux1 transcripts was half of WT animals. Expression of CUX1 proteins was reduced, although in early postnatal animals significantly more than in adults. In summary, disease-causing CUX1 variants result in a non-syndromic phenotype of developmental delay and intellectual disability. In some individuals, this phenotype ameliorates with age, resulting in a clinical catch-up and normal IQ in adulthood. The post-transcriptional balance of CUX1 expression in the heterozygous brain at late developmental stages appears important for this favorable clinical course.
Keyphrases
- intellectual disability
- autism spectrum disorder
- poor prognosis
- mouse model
- binding protein
- early onset
- copy number
- healthcare
- depressive symptoms
- type diabetes
- white matter
- gene expression
- dna methylation
- preterm infants
- adipose tissue
- skeletal muscle
- metabolic syndrome
- high intensity
- resistance training
- cerebral ischemia
- insulin resistance
- health information
- heat shock protein
- heat stress
- drug induced
- genome wide