H 2 S preconditioning induces long-lived perturbations in O 2 metabolism.
David A HannaJutta DiesslArkajit GuhaRoshan KumarAnthony AndrenCostas Andreas LyssiotisRuma BanerjeePublished in: bioRxiv : the preprint server for biology (2023)
Hydrogen sulfide exposure in moderate doses can induce profound but reversible hypometabolism in mammals. At a cellular level, H 2 S inhibits the electron transport chain (ETC), augments aerobic glycolysis, and glutamine-dependent carbon utilization via reductive carboxylation; however, the durability of these changes is unknown. We report that despite its volatility, H 2 S preconditioning increases P 50(O2) , the O 2 pressure for half maximal cellular respiration, and has pleiotropic effects on oxidative metabolism that persist up to 24-48 h later. Notably, cyanide, another complex IV inhibitor, does not induce this type of metabolic memory. Sulfide-mediated prolonged fractional inhibition of complex IV by H 2 S is modulated by sulfide quinone oxidoreductase, which commits sulfide to oxidative catabolism. Since induced hypometabolism can be beneficial in disease settings that involve insufficient or interrupted blood flow, our study has important implications for attenuating reperfusion-induced ischemic injury, and/or prolonging shelf life of biologics like platelets.