Login / Signup

In silico prediction of enzymatic reactions catalyzed by acid phosphatases.

Javad Zamani AmirzakariaMohammad Ali MalboobiSayed-Amir MarashiTahmineh Lohrasebi
Published in: Journal of biomolecular structure & dynamics (2020)
In present work, we describe a methodology for prediction of an enzymatic reaction for which no experimental data are available except for a gene sequence. As a challenging case, we have developed the method for identifying the putative substrates of monoester phosphatases, commonly known as acid phosphatase enzymes, which have no strong substrate specificity. Finding a preferable substrate for each one is an important task to unravel pathways involved in plant phosphate metabolism. Having used an Arabidopsis thaliana haloacid dehalogenase (HAD)-related acid phosphatases, HRP9, with an experimentally known structure and preferred substrate as an instance, we firstly predicted the 3 D-structure of HRP1 for subsequent analysis. Then, molecular docking was used to find the best protein interaction with a ligand existing in a set of possible substrates compiled from genome scale metabolic networks of A. thaliana based on binding energy, binding mode as well as the distance between phosphoric ester and cofactor, Mg2+, localized in the active site of HRP1. Molecular dynamics simulation ratified stable protein-ligand complex model. Our analysis predicted HRP1 preferably bind to pyridoxamine-5'-phosphate (PMP). Thus, it is deduced that the conversion of PMP to pyridoxamine must be catalyzed by HRP1. This procedure is expected to make a reliable pipeline to predict the enzymatic reactions catalyzed by acid phosphatases. Taken as a whole, it could be applicable for discovery of the interacting ligands, inhibitors as well as interacting proteins which limits lab works or used for gap filling in biosystems.Communicated by Ramaswamy H. Sarma.
Keyphrases