Login / Signup

GALA-Modified Lipid Nanoparticles for the Targeted Delivery of Plasmid DNA to the Lungs.

Yuta HaginoIkramy A KhalilSeigo KimuraKenji KusumotoHideyoshi Harashima
Published in: Molecular pharmaceutics (2021)
This study describes the development of lipid nanoparticles (LNPs) for the efficient and selective delivery of plasmid DNA (pDNA) to the lungs. The GALA peptide was used as a ligand to target the lung endothelium and as an endosomal escape device. Transfection activity in the lungs was significantly improved when pDNA was encapsulated in double-coated LNPs. The inner coat was composed of dioleoylphsophoethanolamine and a stearylated octaarginine (STR-R8) peptide, while the outer coat was largely a cationic lipid, di-octadecenyl-trimethylammonium propane, mixed with YSK05, a pH-sensitive lipid, and cholesterol. Optimized amounts of YSK05 and GALA were used to achieve an efficient and lung-selective system. The optimized system produced a high gene expression level in the lungs (>107 RLU/mg protein) with high lung/liver and lung/spleen ratios. GALA/R8 modification and the double-coating design were indispensable for efficient gene expression in the lungs. Despite the fact that NPs prepared with 1-step or 2-step coating have the same lipid amount and composition and the same pDNA dose, the transfection activity was dramatically higher in the lungs in the case of 2-step coating. Surprisingly, 1-step or 2-step coatings had no effect on the amount of nanoparticles that were delivered to the lungs, suggesting that the double-coating strategy substantially improved the efficiency of gene expression at the intracellular level.
Keyphrases
  • gene expression
  • dna methylation
  • fatty acid
  • escherichia coli
  • crispr cas
  • single molecule
  • cell free
  • nitric oxide
  • pseudomonas aeruginosa
  • candida albicans
  • protein protein
  • nucleic acid