Login / Signup

Large-scale analysis of structural brain asymmetries during neurodevelopment: Associations with age and sex in 4265 children and adolescents.

Florian KurthD SchijvenO A van den HeuvelMartine HoogmanD van RooijD J SteinJ K BuitelaarS BölteG AuziasA KushkiG VenkatasubramanianKatya RubiaS BollmannJ IsakssonF Jaspers-FayerR MarshM C BatistuzzoP D ArnoldR A BressanS E StewartP GrunerL SorensenP M PanT J SilkR C GurA I CubilloJ HaavikR L O'Gorman TuuraC A HartmanR CalvoJ McGrathS CalderoniA JackowskiK C ChantilukeT D SatterthwaiteG F BusattoJ T NiggR E GurAlessandra ReticoM TosettiL GallagherP R SzeszkoJ NeufeldA E OrtizC GhisleniL LazaroP J HoekstraE AnagnostouL HoekstraB SimpsonJ K PlessenC DeruelleN SoreniA JamesJ NarayanaswamyJ Y ReddyJacqueline FitzgeraldM A BellgroveG A SalumJ JanssenF MuratoriM VilaM Garcia GiralS H AmeisP BoscoK Lundin RemnéliusC HuyserJ C ParienteM JalbrzikowskiP G RosaK M O'HearnS EhrlichJ MollonAndré ZugmanA ChristakouC ArangoS E FisherX KongB FrankeSarah E MedlandSophia I ThomopoulosN JahanshadD C GlahnP M ThompsonClyde FrancksE Luders
Published in: Human brain mapping (2024)
Only a small number of studies have assessed structural differences between the two hemispheres during childhood and adolescence. However, the existing findings lack consistency or are restricted to a particular brain region, a specific brain feature, or a relatively narrow age range. Here, we investigated associations between brain asymmetry and age as well as sex in one of the largest pediatric samples to date (n = 4265), aged 1-18 years, scanned at 69 sites participating in the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) consortium. Our study revealed that significant brain asymmetries already exist in childhood, but their magnitude and direction depend on the brain region examined and the morphometric measurement used (cortical volume or thickness, regional surface area, or subcortical volume). With respect to effects of age, some asymmetries became weaker over time while others became stronger; sometimes they even reversed direction. With respect to sex differences, the total number of regions exhibiting significant asymmetries was larger in females than in males, while the total number of measurements indicating significant asymmetries was larger in males (as we obtained more than one measurement per cortical region). The magnitude of the significant asymmetries was also greater in males. However, effect sizes for both age effects and sex differences were small. Taken together, these findings suggest that cerebral asymmetries are an inherent organizational pattern of the brain that manifests early in life. Overall, brain asymmetry appears to be relatively stable throughout childhood and adolescence, with some differential effects in males and females.
Keyphrases