Diastereoselective synthesis of (±)-trichodiene and (±)-trichodiene-D3 as analytical standards for the on-site quantification of trichothecenes.
Michael A SebaldJulian GebauerMatthias KochPublished in: Organic & biomolecular chemistry (2021)
The ubiquitous Fusarium genus is responsible for the spoilage of vast amounts of cereals and fruits. Besides the economic damage, the danger to human and animal health by the concomitant exposure to mycotoxins represents a serious problem. A large number of Fusarium species produce a variety of different mycotoxins of which the class of trichothecenes are of particular importance due to their toxicity. Being identified as the common volatile precursor during the biosynthesis of trichothecenes, (-)-trichodiene (TD) is considered to be a biomarker for the respective mycotoxin content in food samples. We postulated that the development of a non-invasive, on-site GC-IMS method for the quantification of (-)-trichodiene supplemented with a stationary SIDA headspace GC-MS reference method would allow circumventing the laborious and expensive analyses of individual trichothecenes in large cereal samples. In this work we present the syntheses of the required native calibration standard and an isotope labeled (TD-D3) internal standard.