Login / Signup

In Situ Formation of Hexagon-like Column Array Hydroxyapatite on 3D-Plotted Hydroxyapatite Scaffolds by Hydrothermal Method and Its Effect on Osteogenic Differentiation.

Yingqi WeiLei LiuHuichang GaoXue-Tao ShiYingjun Wang
Published in: ACS applied bio materials (2020)
In the preparation of bioactive bone graft materials, surface topography is essential for the ultimate stem cell response. However, the tunable fabrication of surface topography for 3D bioceramic scaffolds is still a technical problem because of the low processability and high brittleness of bioceramics. In this study, an evenly spaced hexagon-like column array surface was fabricated in situ via a hydrothermal method on 3D plotted hydroxyapatite scaffolds. Compared with the Control scaffolds, hydroxyapatite scaffolds with a hexagon-like column array topography possessed a higher crystal orientation degree and specific surface area, which further enhanced fibronectin adsorption. The array topography on the hydroxyapatite scaffolds also showed good biocompatibility with human adipose-derived stem cells (ADSCs). More importantly, the Array scaffolds significantly promoted the expression levels of osteogenic-related genes and proteins compared with the Control scaffolds. The results suggested that the construction of hexagon-like column array topography might be critical for the design of bone regeneration scaffolds with spontaneous stimulation capacity.
Keyphrases