Login / Signup

Pinching a glass reveals key properties of its soft spots.

Corrado RainoneEran BouchbinderEdan Lerner
Published in: Proceedings of the National Academy of Sciences of the United States of America (2020)
It is now well established that glasses feature quasilocalized nonphononic excitations-coined "soft spots"-, which follow a universal [Formula: see text] density of states in the limit of low frequencies ω. All glass-specific properties, such as the dependence on the preparation protocol or composition, are encapsulated in the nonuniversal prefactor of the universal [Formula: see text] law. The prefactor, however, is a composite quantity that incorporates information both about the number of quasilocalized nonphononic excitations and their characteristic stiffness, in an apparently inseparable manner. We show that by pinching a glass-i.e., by probing its response to force dipoles-one can disentangle and independently extract these two fundamental pieces of physical information. This analysis reveals that the number of quasilocalized nonphononic excitations follows a Boltzmann-like law in terms of the parent temperature from which the glass is quenched. The latter, sometimes termed the fictive (or effective) temperature, plays important roles in nonequilibrium thermodynamic approaches to the relaxation, flow, and deformation of glasses. The analysis also shows that the characteristic stiffness of quasilocalized nonphononic excitations can be related to their characteristic size, a long sought-for length scale. These results show that important physical information, which is relevant for various key questions in glass physics, can be obtained through pinching a glass.
Keyphrases
  • physical activity
  • single molecule
  • mental health
  • randomized controlled trial
  • health information
  • machine learning
  • oxidative stress
  • smoking cessation
  • preterm infants
  • social media
  • low birth weight