Login / Signup

Prolonging the duration of cooling does not enhance recovery following a marathon.

Susan Y KwiecienMalachy P McHughKirsty Marie HicksKaren M KeaneGlyn Howatson
Published in: Scandinavian journal of medicine & science in sports (2020)
Runners commonly utilize cryotherapy as part of their recovery strategy. Cryotherapy has been ineffective in mitigating signs and symptoms of muscle damage following marathon running and is limited by its duration of application. Phase change material (PCM) packs can prolong the duration of cooling. This study aimed to test the efficacy of prolonging the duration of cooling using PCM on perceptual recovery, neuromuscular function, and blood markers following a marathon run. Thirty participants completed a marathon run and were randomized to receive three hours of 15°C PCM treatment covering the quadriceps or recover without an intervention (control). Quadriceps soreness, strength, countermovement jump (CMJ) height, creatine kinase (CK), and high sensitivity C-reactive protein (hsCRP) were recorded at baseline, 24, 48, and 72 hours after the marathon. Following the marathon, strength decreased in both groups (P < .0001), with no difference between groups. Compared to baseline, strength was reduced 24 (P = .004) and 48 hours after the marathon (P = .008) in the control group, but only 24 hours (P = .028) in the PCM group. Soreness increased (P < .0001) and CMJ height decreased (P < .0001) in both groups, with no difference between groups. Compared to baseline, CMJ height was not reduced on any days in the PCM group but was reduced in the control group 24 (P < .0001) and 48 hours (P = .003) after the marathon. CK and hsCRP increased in both groups (P < .0001). Although the marathon run induced significant muscle damage, prolonging the duration of cooling using PCM did not accelerate the resolution of any dependent variables.
Keyphrases
  • body mass index
  • oxidative stress
  • randomized controlled trial
  • protein kinase
  • double blind
  • working memory
  • tyrosine kinase
  • endothelial cells