Login / Signup

Characterization of Bioactive Compounds from Patchouli Extracted via Supercritical Carbon Dioxide (SC-CO 2 ) Extraction.

Syaifullah MuhammadAbdul Khalil H P SShazlina Abd HamidMohammed DanishM MarwanYunardi YunardiChe K AbdullahMuhammad FaisalEsam Bashir Yahya
Published in: Molecules (Basel, Switzerland) (2022)
Patchouli extracts and oils extracted from Pogostemon cablin are essential raw material for the perfume and cosmetics industries, in addition to being used as a natural additive for food flavoring. Steam distillation is a standard method used for plant extraction. However, this method causes thermal degradation of some essential components of the oil. In this study, patchouli was extracted with supercritical carbon dioxide (SC-CO 2 ) under different conditions of pressure (10-30 MPa) and temperature (40-80 °C). The chemical components of the crude extracted oil and the functional group were characterized using gas chromatography-mass spectrometry (GC-MS) and Fourier Transform Infrared Spectroscopy (FT-IR). The extraction with supercritical carbon dioxide was shown to provide a higher yield (12.41%) at a pressure of 20 MPa and a temperature of 80 °C. Patchouli alcohol, Azulene, δ-Guaiene, and Seychellene are the main bioactive compounds that GC-MS results have identified. FTIR spectra showed alcohol, aldehyde, and aromatic ring bond stretching peaks. Extraction of patchouli with supercritical carbon dioxide provided a higher yield and a better quality of the crude patchouli oil.
Keyphrases
  • carbon dioxide
  • gas chromatography mass spectrometry
  • fatty acid
  • alcohol consumption
  • high resolution
  • climate change
  • molecular dynamics
  • gas chromatography