Login / Signup

German cockroach extract prevents IL-13-induced CCL26 expression in airway epithelial cells through IL-13 degradation.

Khadija Rashed AlzahraniErik Gomez-CardonaVivek D GandhiNami Shrestha PalikheCheryl R LarattaOlivier JulienHarissios Vliagoftis
Published in: FASEB journal : official publication of the Federation of American Societies for Experimental Biology (2024)
Inhaled aeroallergens can directly activate airway epithelial cells (AECs). Exposure to cockroach allergens is a strong risk factor for asthma. Cockroach allergens mediate some of their effects through their serine protease activity; protease activity is also a major contributor to allergenicity. The Th2 cytokine interleukin-13 (IL-13) induces upregulation of the eosinophil chemotactic factor CCL26. CCL26 induces eosinophil migration in allergic inflammation. In this work, we studied the effect of cockroach proteases on IL-13-induced effects. Immersed cultures of the human bronchial epithelial cell line BEAS-2B and air-liquid interface (ALI) cultures of primary normal human bronchial epithelial (NHBE) cells were stimulated with IL-13, Blattella Germanica cockroach extract (CE), or both. IL-13-induced genes were analyzed with qRT-PCR. IL-13 induced upregulation of CCL26, periostin, and IL-13Rα2 in bronchial epithelial cells which were decreased by CE. CE was heat-inactivated (HICE) or pre-incubated with protease inhibitors. HICE and CE preincubated with serine protease inhibitors did not prevent IL-13-induced CCL26 upregulation. CE-degraded IL-13 and specific cleavage sites were identified. CE also decreased IL-4-induced CCL26 upregulation and degraded IL-4. Other serine proteases such as bovine trypsin and house dust mite (HDM) serine proteases did not have the same effects on IL-13-induced CCL26. We conclude that CE serine proteases antagonize IL-13-induced effects in AECs, and this CE effect is mediated primarily through proteolytic cleavage of IL-13. IL-13 cleavage by cockroach serine proteases may modulate CCL26-mediated effects in allergic airway inflammation by interfering directly with the pro-inflammatory effects of IL-13 in vivo.
Keyphrases