Login / Signup

Estrogens drive the endoplasmic reticulum-associated degradation and promote proto-oncogene c-Myc expression in prostate cancer cells by androgen receptor/estrogen receptor signaling.

Yalcin ErzurumluHatice Kubra DoğanDeniz CatakliEsra AydogduMuhammed Tilahun Muhammed
Published in: Journal of cell communication and signaling (2023)
The tumorigenic properties of prostate cancer are regulated by advanced hormonal regulation-mediated complex molecular signals. Therefore, characterizing the regulation of these signal transduction systems is crucial for understanding prostate cancer biology. Recent studies have shown that endoplasmic reticulum (ER)-localized protein quality control mechanisms, including ER-associated degradation (ERAD) and unfolded protein response (UPR) signaling contribute to prostate carcinogenesis and to the development of drug resistance. It has also been determined that these systems are tightly regulated by androgens. However, the role of estrogenic signaling in prostate cancer and its effects on protein quality control mechanisms is not fully understood. Herein, we investigated the regulatory effects of estrogens on ERAD and UPR and their impacts on prostate carcinogenesis. We found that estrogens strongly regulated the ERAD components and IRE1⍺ branch of UPR by Er⍺/β/AR axis. Besides, estrogenic signaling rigorously regulated the tumorigenicity of prostate cancer cells by promoting c-Myc expression and epithelial-mesenchymal transition (EMT). Moreover, estrogenic signal blockage significantly decreased the tumorigenic features of prostate cancer cells. Additionally, simultaneous inhibition of androgenic/estrogenic signals more efficiently inhibited tumorigenicity of prostate cancer cells, including proliferation, migration, invasion and colonial growth. Furthermore, computational-based molecular docking, molecular dynamics simulations and MMPBSA calculations supported the estrogenic stimulation of AR. Present findings suggested that ERAD components and IRE1⍺ signaling are tightly regulated by estrogen-stimulated AR and Er⍺/β. Our data suggest that treatment approaches targeting the co-inhibition of androgenic/estrogenic signals may pave the way for new treatment approaches to be developed for prostate cancer. The present model of the impact of estrogens on ERAD and UPR signaling in androgen-sensitive prostate cancer cells.
Keyphrases