Familiar Sequences Are Processed Faster Than Unfamiliar Sequences, Even When They Do Not Match the Count-List.
Declan DevlinKorbinian MoellerIro Xenidou-DervouBert ReynvoetFrancesco SellaPublished in: Cognitive science (2024)
In order processing, consecutive sequences (e.g., 1-2-3) are generally processed faster than nonconsecutive sequences (e.g., 1-3-5) (also referred to as the reverse distance effect). A common explanation for this effect is that order processing operates via a memory-based associative mechanism whereby consecutive sequences are processed faster because they are more familiar and thus more easily retrieved from memory. Conflicting with this proposal, however, is the finding that this effect is often absent. A possible explanation for these absences is that familiarity may vary both within and across sequence types; therefore, not all consecutive sequences are necessarily more familiar than all nonconsecutive sequences. Accordingly, under this familiarity perspective, familiar sequences should always be processed faster than unfamiliar sequences, but consecutive sequences may not always be processed faster than nonconsecutive sequences. To test this hypothesis in an adult population, we used a comparative judgment approach to measure familiarity at the individual sequence level. Using this measure, we found that although not all participants showed a reverse distance effect, all participants displayed a familiarity effect. Notably, this familiarity effect appeared stronger than the reverse distance effect at both the group and individual level; thus, suggesting the reverse distance effect may be better conceptualized as a specific instance of a more general familiarity effect.
Keyphrases