Login / Signup

Microalgal glycerol-3-phosphate acyltransferase role in galactolipids and high-value storge lipid biosynthesis.

Song ZouYuanchen LuHaiyan MaYanhua LiGuanqun ChenDanxiang HanQiang Hu
Published in: Plant physiology (2023)
Glycerolipids are the most abundant lipids in microalgae, and glycerol-3-phosphate:acyl-CoA acyltransferase (GPAT) plays an important role in their biosynthesis. However, the biochemical and biological functions of algal GPAT remain poorly characterized. Here, we characterized the endoplasmic reticulum (ER)-associated GPAT of the model unicellular green alga Chlamydomonas reinhardtii (CrGPATer). Enzymatic assays indicated CrGPATer is a sn-1 acyltransferase using a variety of acyl-CoAs as the acyl donor. Subcellular localization revealed CrGPATer was associated with ER membranes and lipid droplets. We constructed overexpression and knockdown transgenic C. reinhardtii lines to investigate the in vivo function of CrGPATer. Lipidomic analysis indicated CrGPATer overexpression enhanced the cellular content of galactolipids, especially monogalactosyldiacylglycerol, under nitrogen deficiency stress. Correspondingly, CrGPATer knockdown lines contained lower contents of galactolipids than the control. Feeding experiments with labeled phosphatidic acid revealed that the intermediate of the eukaryotic Kennedy pathway could be used for galactolipid biosynthesis in the chloroplasts. These results provided multiple lines of evidence that the eukaryotic Kennedy pathway mediated by CrGPATer may be involved in galactolipid biosynthesis in C. reinhardtii. Overexpression of CrGPATer significantly increased the content of triacylglycerol and the yield of biomass. Moreover, the content and yield of 1, 3-olein-2-palmitin, a high-value lipid that can be used as an alternative for human milk fat in infant formula, were significantly enhanced in the overexpression transgenic lines. Taken together, this study provided insights into the biochemical and biological functions of CrGPATer and its potential as a genetic engineering target in functional lipid manufacturing.
Keyphrases