Transport of Extracellular Vesicles across the Blood-Brain Barrier: Brain Pharmacokinetics and Effects of Inflammation.
William A BanksPriyanka SharmaKristin M BullockKim M HansenNils LudwigTheresa L WhitesidePublished in: International journal of molecular sciences (2020)
Extracellular vesicles can cross the blood-brain barrier (BBB), but little is known about passage. Here, we used multiple-time regression analysis to examine the ability of 10 exosome populations derived from mouse, human, cancerous, and non-cancerous cell lines to cross the BBB. All crossed the BBB, but rates varied over 10-fold. Lipopolysaccharide (LPS), an activator of the innate immune system, enhanced uptake independently of BBB disruption for six exosomes and decreased uptake for one. Wheatgerm agglutinin (WGA) modulated transport of five exosome populations, suggesting passage by adsorptive transcytosis. Mannose 6-phosphate inhibited uptake of J774A.1, demonstrating that its BBB transporter is the mannose 6-phosphate receptor. Uptake rates, patterns, and effects of LPS or WGA were not predicted by exosome source (mouse vs. human) or cancer status of the cell lines. The cell surface proteins CD46, AVβ6, AVβ3, and ICAM-1 were variably expressed but not predictive of transport rate nor responses to LPS or WGA. A brain-to-blood efflux mechanism variably affected CNS retention and explains how CNS-derived exosomes enter blood. In summary, all exosomes tested here readily crossed the BBB, but at varying rates and by a variety of vesicular-mediated mechanisms involving specific transporters, adsorptive transcytosis, and a brain-to-blood efflux system.
Keyphrases
- blood brain barrier
- cerebral ischemia
- inflammatory response
- mesenchymal stem cells
- endothelial cells
- resting state
- white matter
- stem cells
- cell surface
- anti inflammatory
- immune response
- induced pluripotent stem cells
- oxidative stress
- functional connectivity
- pluripotent stem cells
- squamous cell carcinoma
- lps induced
- genetic diversity
- subarachnoid hemorrhage
- binding protein
- aqueous solution
- childhood cancer