Functions of a Glucan Synthase Gene GFGLS in Mycelial Growth and Polysaccharide Production of Grifola frondosa.
Feng-Jie CuiXi-Hong WuTing-Lei TaoXin-Yi ZanWen-Jing SunDa-Shuai MuYan YangDi WuPublished in: Journal of agricultural and food chemistry (2019)
Glucan synthase (GLS) gene is known to be involved in the fungal biosynthesis of cell wall, differentiation, and growth. In the present study, a glucan synthase gene (GFGLS) in the edible mushroom Grifola frondosa with a full sequence of 5927 bp encoding a total of 1781 amino acids was cloned and characterized for the first time. GFGLSp is a membrane protein containing two large transmembrane domains connected with a hydrophilic cytoplasmic domain. With a constructed dual promoter RNA silencing vector pAN7-gfgls-dual, a GFGLS-silencing transformant iGFGLS-3 had the lowest GFGLS transcriptional expression level (26.1%) with a shorter length and thinner appearance of the mycelia, as well as decreased mycelial biomass and exo-polysaccharide production of 5.02 and 0.38 g/L, respectively. Further analysis indicated that GFGLS silence influenced slightly the monosaccharide compositions and ratios of mycelial and exo-polysaccharide. These findings suggest that GFGLS could affect mycelial growth and polysaccharide production by downregulating the glucan synthesis.