Login / Signup

Updates on the genetics of multiple endocrine neoplasia.

Nicolas SahakianFrederic CastinettiPauline RomanetYves ReznikThierry Brue
Published in: Annales d'endocrinologie (2024)
Multiple endocrine neoplasia (MEN) is a group of syndromes with a genetic predisposition to the appearance of endocrine tumors, and shows autosomal dominant transmission. The advent of molecular genetics has led to improvements in the management of MEN in terms of diagnosis, prognosis and therapy. The genetics of MEN is the subject of regular updates, which will be presented throughout this paper. MEN1, the first to be described, is associated with the MEN1 gene. MEN1 is well known in terms of the observed phenotype, with genetic analysis being conclusive in 90% of patients with a typical phenotype, but is negative in around 10% of families with MEN1. Improvement in analysis techniques and the identification of other genes responsable for phenocopies allows the resolution of some, but not all, cases, notably non-familial forms suspected to be fortuitous assocations with tumors. MEN4 is a rare phenocopy of MEN1 linked to constitutional mutations in the CDKN1B gene. Though it closely resembles the phenotype of MEN1, published data suggests the appearance of tumors is later and less frequent in MEN4. MEN2, which results from mutations in the RET oncogene, shows a strong genotype-phenotype correlation. This correlation is particularly evident in the major manifestation of MEN2, medullary thyroid carcinoma (MTC), in which disease aggressiveness is dependent on the pathogenic variant of RET. However, recent studies cast doubt on this correlation between MTC and pathogenic variant. Lastly, the recent description of families carrying a mutation in MAX, which is known to predispose to the development of pheochromocytoma and paraganglioma, and presents a phenotypic spectrum that evokes MEN, suggests the existence of another syndrome, MEN5.
Keyphrases
  • middle aged
  • bone marrow
  • randomized controlled trial
  • pulmonary embolism
  • dna methylation
  • machine learning
  • copy number
  • deep learning