Login / Signup

Thermal properties of energetic materials from quasi-harmonic first-principles calculations.

Junyu FanYan SuZhaoyang ZhengJijun Zhao
Published in: Journal of physics. Condensed matter : an Institute of Physics journal (2021)
The structure and properties at a finite temperature are critical to understand the temperature effects on energetic materials (EMs). Combining dispersion-corrected density functional theory with quasi-harmonic approximation, the thermodynamic properties for several representative EMs, including nitromethane, PETN, HMX, and TATB, are calculated. The inclusion of zero-point energy and temperature effect could significantly improve the accuracy of lattice parameters at ambient condition; the deviations of calculated cell volumes and experimental values at room temperature are within 0.62%. The calculated lattice parameters and thermal expansion coefficients with increasing temperature show strong anisotropy. In particular, the expansion rate (2.61%) of inter-layer direction of TATB is higher than intra-layer direction and other EMs. Furthermore, the calculated heat capacities could reproduce the experimental trends and enrich the thermodynamic data set at finite temperatures. The predicted isothermal and adiabatic bulk moduli could reflect the softening behavior of EMs. These results would fundamentally provide a deep understanding and serve as a reference for the experimental measurement of the thermodynamic parameters of EMs.
Keyphrases