Login / Signup

Impact of Harvest Month and Drying Process on the Nutritional and Bioactive Properties of Wild Palmaria palmata from Atlantic Canada.

Bétina LafeuilleÉric TamigneauxKarine BergerVéronique ProvencherLucie Beaulieu
Published in: Marine drugs (2023)
The macroalga Palmaria palmata could be a sustainable and nutritional food resource. However, its composition may vary according to its environment and to processing methods used. To investigate these variations, wild P. palmata from Quebec were harvested in October 2019 and June 2020, and dried (40 °C, ≃5 h) or stored as frozen controls (-80 °C). The chemical (lipids, proteins, ash, carbohydrates, fibers), mineral (I, K, Na, Ca, Mg, Fe), potential bioactive compound (carotenoids, polyphenols, β-carotene, α-tocopherol) compositions, and the in vitro antioxidant activity and angiotensin-converting enzyme (ACE) inhibition potential of water-soluble extracts were determined. The results suggested a more favorable macroalgae composition in June with a higher content of most nutrients, minerals, and bioactive compounds. October specimens were richer only in carbohydrates and carotenoids. No significant differences in antioxidant or anti-ACE inhibitory activities were found between the two harvest months. The drying process did not significantly impact the chemical and mineral compositions, resulting in only small variations. However, drying had negative impacts on polyphenols and anti-ACE activities in June, and on carotenoids in October. In addition, a concentration effect was observed for carotenoids, β-carotene and α-tocopherol in June. To provide macroalgae of the highest nutritional quality, the drying process for June specimens should be selected.
Keyphrases
  • angiotensin converting enzyme
  • angiotensin ii
  • water soluble
  • human health
  • heavy metals
  • genetic diversity