Chlorophyll fluorescence as a valuable multitool for microalgal biotechnology.
Alexei E SolovchenkoAlexandr LukyanovSvetlana VasilievaElena LobakovaPublished in: Biophysical reviews (2022)
Variable fluorescence of chlorophyll (CF) of the photosynthetic apparatus is an ample source of valuable information on physiological condition of photosynthetic organisms. Currently, the most widespread CF-based technique is represented by recording pulse-amplitude modulated (PAM) induction of CF by saturating light. The CF-based monitoring techniques are increasingly employed for characterization of performance and stress resilience of microalgae in microalgal biotechnology. Analysis of CF induction curves reveals the fate of light energy absorbed by photosynthetic apparatus, the proportions of the energy that have been utilized for photochemistry (culture growth), and heat dissipated by photoprotective mechanisms. Hence CF and its derived parameters are an accurate proxy of the metabolic activity of the photosynthetic cell and the engagement of photoprotective mechanisms. This information is a solid foundation for making decisions on the microalgal culture management during the lab-scale and industrial-scale cultivation. Applications of CF and PAM include the monitoring of stressor (high light, nutrient deprivation, extreme temperatures, etc.) effects for assessment of the culture robustness. It also serves as a non-invasive express test for gauging the effect of assorted toxicants in microalgae. This approach is becoming widespread in ecological toxicology and environmental biotechnology, particularly for bioprospecting strains capable of the destruction of dangerous pollutants such as pharmaceuticals. In the review, we discuss the advantages and drawbacks of using CF-based methods for assessment of the culture conditions. Special attention is paid to the potential caveats and applicability of different variations of CF and PAM measurements for solving problems of microalgal biotechnology.