Login / Signup

The expression discrepancy and characteristics of long non-coding RNAs in peripheral blood leukocytes from amyotrophic lateral sclerosis patients.

Yujiao YuDejiang PangChunyu LiXiaojing GuYongping ChenRuwei OuQianqian WeiHui Fang Shang
Published in: Molecular neurobiology (2022)
Amyotrophic lateral sclerosis (ALS) is known to be a progressive neurodegenerative disease that affects upper and lower motor neurons. Less than 10% of ALS patients are defined as familial ALS, and more than 90% are sporadic ALS (SALS). According to the genomic information described in existing databases, up to 98% of the human genome consists of non-coding sequences. Nearly 40% of long non-coding RNAs (lncRNAs) are specifically expressed in the brain. We believe that the discrepancy of lncRNAs expression plays a key role in neurodegenerative diseases. We screened 30 lncRNAs with altered expression from peripheral blood leukocytes of SALS patients by microarray and validated 13 of them in leukocytes of SALS, Parkinson's disease (PD) patients, and healthy controls (HC). We followed the bioinformatics to perform a functional enrichment analysis of co-expressed mRNAs, transcription factors, and lncRNAs for functional prediction. We identified that lnc-DYRYK2-7:1, lnc-ABCA12-3:1, and lnc-POTEM-4:7 show decreased expression in SALS patients, whereas in PD patients, they show increased expression or no change. In addition, expression of lnc-CNTN4-2:1 and lnc-NR3C2-8:1 was decreased in both SALS and PD patients. We found that XIST was only reduced in male patients with SALS and PD, and not in female patients with SALS but was elevated in PD by gender grouping. We also performed GO term enrichment and KEGG pathway analysis for lncRNAs showing differential expression in microarray. We discovered that a significant proportion of differential expressed lncRNAs were associated with various signaling pathways and transcription factors which are consistent with other clinical findings.
Keyphrases