Creation of a Composite Bioactive Coating with Antibacterial Effect Promising for Bone Implantation.
Elena G ZemtsovaLada A KozlovaNatalia M YudintcevaDaria N SokolovaAndrey Yu ArbeninAlexandra N PonomarevaPetr M KorusenkoLiudmila A KraevaElizaveta V RogachevaVladimir M SmirnovPublished in: Molecules (Basel, Switzerland) (2023)
When creating titanium-containing bone implants, the bioactive coatings that promote their rapid engraftment are important. The engraftment rate of titanium implants with bone tissue depends significantly on the modification of the implant surface. It is achieved by changing either the relief or the chemical composition of the surface layer, as well as a combination of these two factors. In this work, we studied the creation of composite coatings with a two-level (the micro- and nanolevel) hierarchy of the surface relief, which have bioactive and bactericidal properties, which are promising for bone implantation. Using the developed non-lithographic template electrochemical synthesis, a composite coating on titanium with a controlled surface structure was created based on an island-type TiO 2 film, silver and hydroxyapatite (HAp). This TiO 2 /Ag/HAp composite coating has a developed surface relief at the micro- and nanolevels and has a significant cytological response and the ability to accelerate osteosynthesis, and also has an antibacterial effect. Thus, the developed biomaterial is suitable for production of dental and orthopedic implants with improved biomedical properties.