The effect of caloric restriction on the increase in senescence-associated T cells and metabolic disorders in aged mice.
Xiaoxiang YanNatsumi ImanoKayoko TamakiMotoaki SanoKen ShinmuraPublished in: PloS one (2021)
Aging is associated with functional decline in the immune system and increases the risk of chronic diseases owing to smoldering inflammation. In the present study, we demonstrated an age-related increase in the accumulation of Programmed Death-1 (PD-1)+ memory-phenotype T cells that are considered "senescence-associated T cells" in both the visceral adipose tissue and spleen. As caloric restriction is an established intervention scientifically proven to exert anti-aging effects and greatly affects physiological and pathophysiological alterations with advanced age, we evaluated the effect of caloric restriction on the increase in this T-cell subpopulation and glucose tolerance in aged mice. Long-term caloric restriction significantly decreased the number of PD-1+ memory-phenotype cluster of differentiation (CD) 4+ and CD8+ T cells in the spleen and visceral adipose tissue, decreased M1-type macrophage accumulation in visceral adipose tissue, and improved insulin resistance in aged mice. Furthermore, the immunological depletion of PD-1+ T cells reduced adipose inflammation and improved insulin resistance in aged mice. Taken together with our previous report, these results indicate that senescence-related T-cell subpopulations are involved in the development of chronic inflammation and insulin resistance in the context of chronological aging and obesity. Thus, long-term caloric restriction and specific deletion of senescence-related T cells are promising interventions to regulate age-related chronic diseases.