Macrophage migration inhibitory factor as a therapeutic target in neuro-oncology: A review.
Jakub JarmulaJuyeun LeeAdam LaukoPrajwal RajappaMatthew M GrabowskiAndrew DhawanPeiwen ChenRichard BucalaMichael A VogelbaumJustin D LathiaPublished in: Neuro-oncology advances (2024)
Primary central nervous system (CNS) tumors affect tens of thousands of patients each year, and there is a significant need for new treatments. Macrophage migration inhibitory factor (MIF) is a cytokine implicated in multiple tumorigenic processes such as cell proliferation, vascularization, and immune evasion and is therefore a promising therapeutic target in primary CNS tumors. There are several MIF-directed treatments available, including small-molecule inhibitors, peptide drugs, and monoclonal antibodies. However, only a small number of these drugs have been tested in preclinical models of primary CNS tumors, and even fewer have been studied in patients. Moreover, the brain has unique therapeutic requirements that further make effective targeting challenging. In this review, we summarize the latest functions of MIF in primary CNS tumor initiation and progression. We also discuss advances in MIF therapeutic development and ongoing preclinical studies and clinical trials. Finally, we discuss potential future MIF therapies and the strategies required for successful clinical translation.
Keyphrases
- end stage renal disease
- small molecule
- cell proliferation
- clinical trial
- newly diagnosed
- blood brain barrier
- ejection fraction
- chronic kidney disease
- adipose tissue
- prognostic factors
- peritoneal dialysis
- stem cells
- randomized controlled trial
- palliative care
- multiple sclerosis
- mesenchymal stem cells
- patient reported outcomes
- drug delivery
- white matter
- cell cycle
- cell therapy
- signaling pathway
- subarachnoid hemorrhage
- risk assessment
- cerebral ischemia
- patient reported
- protein protein