Adaptation to a ketogenic diet modulates adaptive and mucosal immune markers in trained male endurance athletes.
David M ShawFabrice MerienAndrea BraakhuisLauren KeaneyDeborah K DulsonPublished in: Scandinavian journal of medicine & science in sports (2020)
This study examined the effect of short-term adaptation to a ketogenic diet (KD) on resting and post-exercise immune markers. Using a randomized, repeated-measures, crossover design, eight trained, male, endurance athletes ingested a 31-day low carbohydrate (CHO), KD (energy intake: 4% CHO; 78% fat) or their habitual diet (HD) (energy intake: 43% CHO; 38% fat). On days 0 and 31, participants ran to exhaustion at 70% VO2max . A high-CHO (2 g·kg-1 ) meal was ingested prior to the pre-HD, post-HD, and pre-KD trials, with CHO (~55 g·h-1 ) ingested during exercise, whereas a low-CHO (<10 g) meal was ingested prior to the post-KD trial, with fat ingested during exercise. Blood and saliva samples were collected at pre-exercise, exhaustion, and 1 hour post-exhaustion. T-cell-related cytokine gene expression within peripheral blood mononuclear cells (PBMCs) and whole-blood inflammatory cytokine production were determined using 24-hour multi-antigen-stimulated whole-blood cultures. Multi-antigen-stimulated PBMC IFN-γ mRNA expression and the IFN-γ/IL-4 mRNA expression ratio were higher at exhaustion in the post-KD compared with pre-KD trial (P = 0.003 and P = 0.004); however, IL-4 and IL-10 mRNA expression were unaltered (P > 0.05). Multi-antigen-stimulated whole-blood IL-10 production was higher in the post-KD compared with pre-KD trial (P = 0.028), whereas IL-1β, IL-2, IL-8, and IFN-γ production was lower in the post-HD compared with pre-HD trial (P < 0.01). Salivary immunoglobulin A (SIgA) secretion rate was higher in the post-KD compared with pre-KD trial (P < 0.001). In conclusion, short-term adaptation to a KD in endurance athletes may alter the pro- and anti-inflammatory immune cell cytokine response to a multi-antigen in vitro and SIgA secretion rate.