Ishophloroglucin A Ameliorates VEGF-Induced Epithelial-Mesenchymal Transition via VEGFR2 Pathway Inhibition in Microgravity-Stimulated Human Retinal Pigment Epithelial Cells.
Myeongjoo SonBo-Mi RyuJun-Geon JeYung Hyun ChoiDae Yu KimPublished in: Antioxidants (Basel, Switzerland) (2022)
Microgravity stimulation is associated with retinal pigment epithelial (RPE) cells that transition to mesenchymal cells (EMT), and these pathological changes cause visual impairment. Vascular endothelial growth factor (VEGF) is produced from the RPE and contributes to photoreceptor survival. However, changes in VEGF production and function under microgravity stimulation are unknown. In this study, we verified that microgravity stimulation changed the morphological characteristics of human RPE cells (ARPE19 cells) and the expression of actin cytoskeleton regulators, which are related to excessive VEGF expression. Interestingly, microgravity stimulation increased not only the production of VEGF but also the expression of EMT markers. Previously, we studied the potential of ishophloroglucin A (IPA), a phlorotannin, as an antioxidant. In silico results confirmed that IPA could structurally bind to VEGF receptor 2 (VEGFR2) among VEGFRs and inhibit the VEGF pathway. IPA significantly decreased VEGF production and EMT marker expression in microgravity-stimulated cells. It also significantly reduced excessive cell migration in VEGF-induced EMT. Overall, our findings suggested that IPA treatment decreased VEGF production and EMT marker expression in microgravity-stimulated or VEGF-treated ARPE19 cells, and this decrease in EMT could restore excessive cell migration by inhibiting the VEGF/VEGFR2 pathway. Therefore, it is a potential therapeutic candidate for angiogenesis-related eye diseases.
Keyphrases
- vascular endothelial growth factor
- endothelial cells
- epithelial mesenchymal transition
- induced apoptosis
- high glucose
- cell cycle arrest
- poor prognosis
- cell migration
- signaling pathway
- endoplasmic reticulum stress
- stem cells
- transforming growth factor
- long non coding rna
- diabetic rats
- physical activity
- pi k akt
- cell proliferation
- bone marrow
- drug induced
- replacement therapy