Login / Signup

Insights into Allosteric Inhibition of the AcrB Efflux Pump: Role of Distinct Binding Pockets, Protomer Preferences, and Crosstalk Disruption.

Rakesh Kumar RoyAbhishek BeraNiladri Patra
Published in: Journal of chemical information and modeling (2024)
AcrB, a key component in bacterial efflux processes, exhibits distinct binding pockets that influence inhibitor interactions. In addition to the well-known distal binding pocket within the periplasmic domain, a noteworthy pocket amidst the transmembrane (TM) helices serves as an alternate binding site for inhibitors. The bacterial efflux mechanism involves a pivotal functional rotation of the TM protein, inducing conformational changes in each protomer and propelling drugs toward the outer membrane domain. Surprisingly, inhibitors binding to the TM domain display a preference for L protomers over T protomers. Metadynamics simulations elucidate that Lys940 in the TM domain of AcrB can adopt two conformations in L protomers, whereas the energy barrier for such transitions is higher in T protomers. This phenomenon results in stable inhibitor binding in l protomers. Upon a detailed analysis of unbinding pathways using random accelerated molecular dynamics and umbrella sampling, we have identified three distinct routes for ligand exit from the allosteric site, specifically involving regions within the TM domains─TM4, TM5, and TM10. To explore allosteric crosstalk, we focused on the following key residues: Val452 from the TM domain and Ala831 from the porter domain. Surprisingly, our findings reveal that inhibitor binding disrupts this communication. The shortest path connecting Val452 and Ala831 increases upon inhibitor binding, suggesting sabotage of the natural interdomain communication dynamics. This result highlights the intricate interplay between inhibitor binding and allosteric signaling within our studied system.
Keyphrases
  • molecular dynamics
  • small molecule
  • binding protein
  • dna binding
  • systematic review
  • randomized controlled trial
  • density functional theory
  • gene expression
  • minimally invasive
  • single cell
  • genome wide