Identifying novel drug targets through genetic discovery studies and the use of genetic variants as indicators of potential drug efficacy and safety have become critical components of cardiometabolic drug discovery. We highlight the successes of genetically-informed therapeutic strategies, such as PCSK9 and ANGPTL3 inhibitors in lipid lowering and the emerging role of polygenic risk scores in improving the efficiency of clinical trials. Additionally, we explore the potential of gene silencing and editing technologies, such as antisense oligonucleotides and small interfering RNA, showcasing their promise in addressing diseases refractory to conventional treatments. In this review, we highlight four use cases that demonstrate the vital role of genetics in cardiometabolic drug development: (1) identifying drug candidates, (2) anticipating drug target failures, (3) silencing and editing genes, and (4) enriching clinical trials. Through these advances, genetics has paved the way to increased efficiency of drug development as well as the discovery of more personalized and effective treatments for cardiometabolic disease.
Keyphrases
- clinical trial
- drug discovery
- crispr cas
- small molecule
- genome wide
- adverse drug
- high throughput
- drug induced
- randomized controlled trial
- emergency department
- gene expression
- machine learning
- climate change
- big data
- dna methylation
- study protocol
- copy number
- transcription factor
- genome wide identification
- breast cancer risk