Login / Signup

Endurance exercise training changes the limitation on muscle V ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ in normoxia from the capacity to utilize O 2 to the capacity to transport O 2 .

Stephanie P KurtiPeter D WagnerRussell S Richardson
Published in: The Journal of physiology (2023)
Maximal oxygen (O 2 ) uptake ( V ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ ) is an important parameter with utility in health and disease. However, the relative importance of O 2 transport and utilization capacities in limiting muscle V ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ before and after endurance exercise training is not well understood. Therefore, the present study aimed to identify the mechanisms determining muscle V ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ pre- and post-endurance exercise training in initially sedentary participants. In five initially sedentary young males, radial arterial and femoral venous P O 2 ${P}_{{{\mathrm{O}}}_{\mathrm{2}}}$ (blood samples), leg blood flow (thermodilution), and myoglobin (Mb) desaturation ( 1 H nuclear magnetic resonance spectroscopy) were measured during maximal single-leg knee-extensor exercise (KE) breathing either 12%, 21% or 100% O 2 both pre and post 8 weeks of KE training (1 h, 3 times per week). Mb desaturation was converted to intracellular P O 2 ${P}_{{{\mathrm{O}}}_{\mathrm{2}}}$ using an O 2  half-saturation pressure of 3.2 mmHg. Pre-training muscle V ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ was not significantly different across inspired O 2 conditions (12%: 0.47 ± 0.10; 21%: 0.52 ± 0.13; 100%: 0.54 ± 0.01 L min -1 , all q > 0.174), despite significantly greater muscle mean capillary-intracellular P O 2 ${P}_{{{\mathrm{O}}}_{\mathrm{2}}}$ gradients in normoxia (34 ± 3 mmHg) and hyperoxia (40 ± 7 mmHg) than hypoxia (29 ± 5 mmHg, both q < 0.024). Post-training muscle V ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ was significantly different across all inspired O 2 conditions (12%: 0.59 ± 0.11; 21%: 0.68 ± 0.11; 100%: 0.76 ± 0.09 mmHg, all q < 0.035), as were the muscle mean capillary-intracellular P O 2 ${P}_{{{\mathrm{O}}}_{\mathrm{2}}}$ gradients (12%: 32 ± 2; 21%: 37 ± 2; 100%: 45 ± 7 mmHg, all q < 0.029). In these initially sedentary participants, endurance exercise training changed the basis of limitation on muscle V ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ in normoxia from the mitochondrial capacity to utilize O 2 to the capacity to transport O 2 to the mitochondria. KEY POINTS: Maximal O 2 uptake is an important parameter with utility in health and disease. The relative importance of O 2 transport and utilization capacities in limiting muscle maximal O 2 uptake before and after endurance exercise training is not well understood. We combined the direct measurement of active muscle maximal O 2 uptake with the measurement of muscle intracellular P O 2 ${P}_{{{\mathrm{O}}}_{\mathrm{2}}}$ before and after 8 weeks of endurance exercise training. We show that increasing O 2 availability did not increase muscle maximal O 2 uptake before training, whereas increasing O 2 availability did increase muscle maximal O 2 uptake after training. The results suggest that, in these initially sedentary participants, endurance exercise training changed the basis of limitation on muscle maximal O 2 uptake in normoxia from the mitochondrial capacity to utilize O 2 to the capacity to transport O 2 to the mitochondria.
Keyphrases
  • skeletal muscle
  • resistance training
  • high intensity
  • heart rate
  • physical activity
  • healthcare
  • mental health
  • blood flow
  • body composition
  • risk assessment
  • randomized controlled trial
  • oxidative stress
  • blood pressure