Flexible tungsten disulfide superstructure engineering for efficient alkaline hydrogen evolution in anion exchange membrane water electrolysers.
Lingbin XieLonglu WangXia LiuJianmei ChenXixing WenWeiwei ZhaoShujuan LiuQiang ZhaoPublished in: Nature communications (2024)
Anion exchange membrane (AEM) water electrolysis employing non-precious metal electrocatalysts is a promising strategy for achieving sustainable hydrogen production. However, it still suffers from many challenges, including sluggish alkaline hydrogen evolution reaction (HER) kinetics, insufficient activity and limited lifetime of non-precious metal electrocatalysts for ampere-level-current-density alkaline HER. Here, we report an efficient alkaline HER strategy at industrial-level current density wherein a flexible WS 2 superstructure is designed to serve as the cathode catalyst for AEM water electrolysis. The superstructure features bond-free van der Waals interaction among the low Young's modulus nanosheets to ensure excellent mechanical flexibility, as well as a stepped edge defect structure of nanosheets to realize high catalytic activity and a favorable reaction interface micro-environment. The unique flexible WS 2 superstructure can effectively withstand the impact of high-density gas-liquid exchanges and facilitate mass transfer, endowing excellent long-term durability under industrial-scale current density. An AEM electrolyser containing this catalyst at the cathode exhibits a cell voltage of 1.70 V to deliver a constant catalytic current density of 1 A cm -2 over 1000 h with a negligible decay rate of 9.67 μV h -1 .
Keyphrases
- reduced graphene oxide
- ionic liquid
- high density
- highly efficient
- room temperature
- metal organic framework
- gold nanoparticles
- visible light
- heavy metals
- wastewater treatment
- clinical trial
- randomized controlled trial
- stem cells
- carbon dioxide
- quantum dots
- study protocol
- mesenchymal stem cells
- electron transfer
- risk assessment
- bone marrow
- middle aged
- ion batteries
- crystal structure
- soft tissue