A preclinical model of human adolescent binge drinking, adolescent intermittent ethanol exposure (AIE) recreates the heavy binge withdrawal consummatory patterns of adolescents and has identified the loss of basal forebrain cholinergic neurons as a pathological hallmark of this model. Cholinergic neurons of the nucleus basalis magnocellularis (NbM) that innervate the prefrontal cortex (PFC) are particularly vulnerable to alcohol related neurodegeneration. Target derived neurotrophins (nerve growth factor [NGF] and brain-derived neurotrophic factor [BDNF]) regulate cholinergic phenotype expression and survival. Evidence from other disease models implicates the role of immature neurotrophin, or proneurotrophins, activity at neurotrophic receptors in promoting cholinergic degeneration; however, it has yet to be explored in adolescent binge drinking. We sought to characterize the pro- and mature neurotrophin expression, alongside their cognate receptors and cholinergic markers in an AIE model. Male and female Sprague Dawley rats underwent 5 g/kg 20% EtOH or water gavage on two-day-on, two-day-off cycles from post-natal day 25-57. Rats were sacrificed 2 h, 24 h, or 3 weeks following the last gavage, and tissue were collected for protein measurement. Western blot analyses revealed that ethanol intoxication reduced the expression of BDNF and vesicular acetylcholine transporter (vAChT) in the PFC, while NGF was lower in the NbM of AIE treated animals. During acute alcohol withdrawal, proNGF in the PFC was increased while proBDNF decreased, and in the NbM proBDNF increased while NGF decreased. During AIE abstinence, the expression of neurotrophins, their receptors, and vAChT did not differ from controls in the PFC. In contrast, in the NbM the expression of both NGF and choline acetyltransferase (ChAT) were reduced long-term following AIE. Taken together these findings suggest that AIE alters the expression of proneurotrophins and neurotrophins during intoxication and withdrawal that favor prodegenerative mechanisms by increasing the expression of proNGF and proBDNF, while also reducing NGF and BDNF.
Keyphrases
- poor prognosis
- growth factor
- young adults
- binding protein
- mental health
- prefrontal cortex
- living cells
- magnetic resonance imaging
- fluorescent probe
- stem cells
- long non coding rna
- magnetic resonance
- physical activity
- endothelial cells
- bone marrow
- computed tomography
- mesenchymal stem cells
- small molecule
- south africa
- alcohol consumption
- stress induced
- high intensity
- acute respiratory distress syndrome
- amino acid
- heat shock protein
- heat stress