Login / Signup

Pro- and Antioxidative Effect of α-Tocopherol on Edible Oils, Triglycerides and Fatty Acids.

Maria JerzykiewiczIrmina Cwieląg-PiaseckaAdam Jezierski
Published in: Journal of the American Oil Chemists' Society (2013)
Using advanced electron paramagnetic resonance techniques (EPR), oxidation of crude vegetable oils and their components (fatty acids and triglycerides) by radicals generated from hydrogen peroxide was investigated. The correlation rotational times were determined allowing us to characterize radicals formed during edible oils oxidation. Additionally 1H- and 14N-hyperfine coupling constants differentiate the fatty acids dependently on their unsaturation. The acids with a higher number of unsaturated bonds exhibit higher AN values of PBN/·lipid adduct. The waste oil with high free fatty acids content underwent the oxidation reaction more efficiently, however due to saturation and the high content of the fatty acids the carbon-centered radicals formed (upon hydrogen peroxide radicals) and their PBN (N-tert-butyl-α-phenylnitrone) adducts were less stable. The antioxidant effect was dependent on the amount of α-tocopherol added. In small amounts of up to 0.35 mg/1 g of fatty acid or triglyceride, it inhibited the creation of PBN/·lipid adducts while with higher amounts it intensified adduct formation. The α-tocopherol (AT) addition influence was also studied as spin scavenging dependence and indicated that any addition of the antioxidant in the investigated samples led to free radical scavenging and the effect increased with the increase in AT content.
Keyphrases