LSGDM with Biogeography-Based Optimization (BBO) Model for Healthcare Applications.
A HarshavardhanPrasanthi BoyapatiNeelakandan SubramaniAbdul-Rasheed Akeji Alhassan AloloAditya Kumar Singh PundirRanjan WaliaPublished in: Journal of healthcare engineering (2022)
Several studies aimed at improving healthcare management have shown that the importance of healthcare has grown in recent years. In the healthcare industry, effective decision-making requires multicriteria group decision-making. Simultaneously, big data analytics could be used to help with disease detection and healthcare delivery. Only a few previous studies on large-scale group decision-making (LSDGM) in the big data-driven healthcare Industry 4.0 have focused on this topic. The goal of this work is to improve healthcare management decision-making by developing a new MapReduce-based LSDGM model (MR-LSDGM) for the healthcare Industry 4.0 context. Clustering decision-makers (DM), modelling DM preferences, and classification are the three stages of the MR-LSDGM technique. Furthermore, the DMs are subdivided using a novel biogeography-based optimization (BBO) technique combined with fuzzy C-means (FCM). The subgroup preferences are then modelled using the two-tuple fuzzy linguistic representation (2TFLR) technique. The final classification method also includes a feature extractor based on long short-term memory (LSTM) and a classifier based on an ideal extreme learning machine (ELM). MapReduce is a data management platform used to handle massive amounts of data. A thorough set of experimental analyses is carried out, and the results are analysed using a variety of metrics.