Login / Signup

Serine Threonine-Protein Kinase-Derived IW13 Improves Lipid Metabolism via C/EBP-α/SREBP1/FAS Signaling Pathways in HFD-Induced Zebrafish In Vivo Larval Model.

null Ajay Gurunull Gokul Sudhakarannull S Karthick Raja Namasivayamnull Boopathi Seenivasannull Mukesh Pasupulietinull Jesu ArockiarajMeivelu Moovendhan
Published in: Applied biochemistry and biotechnology (2023)
Obesity is linked to the development of major metabolic disorders such as type 2 diabetes, cardiovascular disease, and cancer. Recent research has focused on the molecular link between obesity and oxidative stress. Obesity impairs antioxidant function, resulting in dramatically increased reactive oxygen levels and apoptosis. In this study, we investigated the effect of IW13 peptide on inhibiting lipid accumulation and regulating the antioxidant mechanism to normalize the lipid metabolism in HFD induced zebrafish larvae. Our results showed that co-treatment with IW13 peptide showed a protective effect in HFD zebra fish larvae by increasing the survival and heart rate. However, IW13 peptide co-treatment reduced triglycerides and cholesterol levels while also restoring the SOD and CAT antioxidant enzymes. In addition, IW13 co-treatment inhibited the formation of lipid peroxidation and superoxide anion by regulating the glutathione level. Also, the results showed that IW13 specifically downregulated the expression of the lipogenic-specific genes (C/EBP-α, SREBP1, and FAS). The findings exhibited that the IW13 peptide with effective antioxidant and anti-obesity activity could act as a futuristic drug to treat obesity and oxidative stress-related diseases.
Keyphrases