Transgenerational inheritance of fetal alcohol effects on proopiomelanocortin gene expression and methylation, cortisol response to stress, and anxiety-like behaviors in offspring for three generations in rats: Evidence for male germline transmission.
Omkaram GangisettyShaista ChaudharyAjay PalaganiDipak K SarkarPublished in: PloS one (2022)
Previously it has been shown that fetal alcohol exposure increases the stress response partly due to lowering stress regulatory proopiomelanocortin (Pomc) gene expression in the hypothalamus via epigenetic mechanisms for multiple generations in mixed-breed rats. In this study we assess the induction of heritable epigenetic changes of Pomc-related variants by fetal alcohol exposure in isogenic Fischer 344 rats. Using transgenerational breeding models and fetal alcohol exposure procedures, we determined changes in hypothalamic Pomc gene expression and its methylation levels, plasma corticosterone hormone response to restraint stress, and anxiety-like behaviors using elevated plus maze tests in fetal alcohol-exposed offspring for multiple generations in isogenic Fischer rats. Fetal alcohol-exposed male and female rat offspring showed significant deficits in POMC neuronal functions with increased Pomc gene methylation and reduced expression. These changes in POMC neuronal functions were associated with increased plasma corticosterone response to restraint stress and increased anxiety-like behavior. These effects of fetal alcohol exposure persisted in the F1, F2, and F3 progeny of the male germline but not of the female germline. These data suggest that fetal alcohol exposure induces heritable changes in Pomc-related variants involving stress hyperresponsiveness and anxiety-like behaviors which perpetuate into subsequent generations through the male germline via epigenetic modifications.