Contribution of Ascorbate and Glutathione in Endobacteria Bacillus subtilis -Mediated Drought Tolerance in Two Triticum aestivum L. Genotypes Contrasting in Drought Sensitivity.
Dilara MaslennikovaOksana V LastochkinaPublished in: Plants (Basel, Switzerland) (2021)
We evaluated the effect of endobacteria Bacillus subtilis (strain 10-4) as a co-inoculant for promoting plant growth and redox metabolism in two contrasting genotypes of Triticum aestivum L. (wheat): Ekada70 (drought tolerant (DT)) and Salavat Yulaev (drought susceptible (DS)) in early stages of adaptation to drought (12% PEG-6000). Results revealed that drought reduced growth and dramatically augmented oxidative stress markers, i.e., hydrogen peroxide (H 2 O 2 ) and lipid peroxidation (MDA). Furthermore, the depletion of ascorbate (AsA) and glutathione (GSH), accompanied by a significant activation of ascorbate peroxidase (APX) and glutathione reductase (GR), in both stressed wheat cultivars (which was more pronounced in DS genotype) was found. B. subtilis had a protective effect on growth and antioxidant status, wherein the stabilization of AsA and GSH levels was revealed. This was accompanied by a decrease of drought-caused APX and GR activation in DS plants, while in DT plants additional antioxidant accumulation and GR activation were observed. H 2 O 2 and MDA were considerably reduced in both drought-stressed wheat genotypes because of the application of B. subtilis . Thus, the findings suggest the key roles in B. subtilis -mediated drought tolerance in DS cv. Salavat Yulaev and DT cv. Ekada70 played are AsA and GSH, respectively; which, in both cases, resulted in reduced cell oxidative damage and improved growth in seedlings under drought.
Keyphrases