Login / Signup

Defining the functional divergence of orthologous genes between human and mouse in the context of miRNA regulation.

Chunmei CuiYuan ZhouQinghua Cui
Published in: Briefings in bioinformatics (2022)
Animal models have a certain degree of similarity with human in genes and physiological processes, which leads them to be valuable tools for studying human diseases and for assisting drug development. However, translational researches adopting animal models are largely restricted by the species heterogeneity, which is also a major reason for the failure of drug research. Currently, computational method for exploring the functional differences between orthologous genes is still insufficient. For this purpose, here, we presented an algorithm, functional divergence score (FDS), by comprehensively evaluating the functional differences between the microRNAs regulating the paired orthologous genes. Given that mouse is one of the most popular model animals, currently, FDS was designed to dissect the functional divergence of orthologous genes between human and mouse. The results showed that gene FDS value is significantly associated with gene evolutionary characteristics and can discover expression divergence of human-mouse orthologous genes. Moreover, FDS performed well in distinguishing the targets of approved drugs and the failed ones. These results suggest that FDS is a valuable tool to evaluate the functional divergence of paired human and mouse orthologous genes. In addition, for each orthologous gene pair, FDS can provide detailed differences in functions and phenotypes. Our study provided a useful tool for quantifying the functional difference between human and mouse, and the presented framework is easily to be extended to the orthologous genes between human and other species. An online server of FDS is available at http://www.cuilab.cn/fds/.
Keyphrases
  • endothelial cells
  • genome wide
  • induced pluripotent stem cells
  • genome wide identification
  • squamous cell carcinoma
  • gene expression
  • poor prognosis
  • small molecule
  • long non coding rna
  • binding protein
  • adverse drug