A direct link between active matter and sheared granular systems.
Peter K MorseSudeshna RoyElisabeth AgoritsasEthan StaniferEric I CorwinM Lisa ManningPublished in: Proceedings of the National Academy of Sciences of the United States of America (2021)
The similarity in mechanical properties of dense active matter and sheared amorphous solids has been noted in recent years without a rigorous examination of the underlying mechanism. We develop a mean-field model that predicts that their critical behavior-as measured by their avalanche statistics-should be equivalent in infinite dimensions up to a rescaling factor that depends on the correlation length of the applied field. We test these predictions in two dimensions using a numerical protocol, termed "athermal quasistatic random displacement," and find that these mean-field predictions are surprisingly accurate in low dimensions. We identify a general class of perturbations that smoothly interpolates between the uncorrelated localized forces that occur in the high-persistence limit of dense active matter and system-spanning correlated displacements that occur under applied shear. These results suggest a universal framework for predicting flow, deformation, and failure in active and sheared disordered materials.