Login / Signup

Accurate and Cost-Effective NMR Chemical Shift Predictions for Nucleic Acids Using a Molecules-in-Molecules Fragmentation-Based Method.

Sruthy K ChandyKrishnan Raghavachari
Published in: Journal of chemical theory and computation (2023)
We have developed, implemented, and assessed an efficient protocol for the prediction of NMR chemical shifts of large nucleic acids using our molecules-in-molecules (MIM) fragment-based quantum chemical approach. To assess the performance of our approach, MIM-NMR calculations are calibrated on a test set of three nucleic acids, where the structure is derived from solution-phase NMR studies. For DNA systems with multiple conformers, the one-layer MIM method with trimer fragments (MIM1 trimer ) is benchmarked to get the lowest energy structure, with an average error of only 0.80 kcal/mol with respect to unfragmented full molecule calculations. The MIMI-NMR dimer calibration with respect to unfragmented full molecule calculations shows a mean absolute deviation (MAD) of 0.06 and 0.11 ppm, respectively, for 1 H and 13 C nuclei, but the performance with respect to experimental NMR chemical shifts is comparable to the more expensive MIM1-NMR and MIM2-NMR methods with trimer subsystems. To compare with the experimental chemical shifts, a standard protocol is derived using DNA systems with Protein Data Bank (PDB) IDs 1SY8, 1K2K, and 1KR8. The effect of structural minimizations is employed using a hybrid mechanics/semiempirical approach and used for computations in solution with implicit and explicit-implicit solvation models in our MIM1-NMR dimer methodology. To demonstrate the applicability of our protocol, we tested it on seven nucleic acids, including structures with nonstandard residues, heteroatom substitutions (F and B atoms), and side chain mutations with a size ranging from ∼300 to 1100 atoms. The major improvement for predicted MIM1-NMR dimer calculations is obtained from structural minimizations and implicit solvation effects. A significant improvement with the explicit-implicit solvation model is observed only for two smaller nucleic acid systems (1KR8 and 7NBK), where the expensive first solvation shell is replaced by the microsolvation model, in which a single water molecule is added for each solvent-exposed amino and imino protons, along with the implicit solvation. Overall, our target accuracy of ∼0.2-0.3 ppm for 1 H and ∼2-3 ppm for 13 C has been achieved for large nucleic acids. The proposed MIM-NMR approach is accurate and cost-effective (linear scaling with system size), and it can aid in the structural assignments of a wide range of complex biomolecules.
Keyphrases