Imaging Laser-Induced Fluorescence Detection at the Taylor Cone of Electrospray Ionization Mass Spectrometry.
Máté SzarkaMárton SzigetiAndrás GuttmanPublished in: Analytical chemistry (2019)
Laser-induced fluorescence detection (LIF) is a powerful tool for the quantitative analysis of fluorescent molecules, widely used in glycan analysis with fluorophore labeled carbohydrates where each species has a common response factor. Electrospray ionization mass spectrometry (ESI-MS), on the other hand, while revealing important structural information about individual analytes, generally can have different response factors for different species. For simpler and improved quantitation with ESI-MS, laser-induced fluorescent images were collected at the Taylor cone of the electrospray interface, enabling simultaneous and robust optical (quantitative) and MS (qualitative) detection of fluorophore labeled sugars. The performance of this universally applicable, interface design independent imaging laser-induced fluorescent (iLIF) system was demonstrated using capillary electrophoresis (CE)-ESI-MS in the analysis of aminopyrene-trisulfonate labeled linear maltooligosaccharides and branched glycans from human immunoglobulin. The limit of detection (LOD) of the iLIF system was in this case 40 attomole. The intra- and interday quantitative (peak area) reproducibilities of the system (RSD) were 4.15% and 6.79%, respectively.
Keyphrases
- mass spectrometry
- high resolution
- capillary electrophoresis
- ms ms
- liquid chromatography
- label free
- high performance liquid chromatography
- gas chromatography
- loop mediated isothermal amplification
- quantum dots
- real time pcr
- pet imaging
- living cells
- single molecule
- endothelial cells
- systematic review
- tandem mass spectrometry
- high speed
- fluorescent probe
- social media
- photodynamic therapy
- induced pluripotent stem cells
- fluorescence imaging
- pluripotent stem cells