In Situ Tuning Underwater Bubble Movement on Slippery Lubricant-Infused Anisotropic Microgrooved Surface by Unidirectional Mechanical Strain.
Yunlong JiaoYiyuan ZhangXiaodong LvJiawei JiZhaochang WangYahui SuXiaojun LiuKun LiuPublished in: Langmuir : the ACS journal of surfaces and colloids (2021)
Numerous studies have focused on designing and fabricating functional interfaces that control movement behavior of underwater gas bubbles, which are ubiquitous in a variety of natural and industrial settings. Nevertheless, developing surfaces with in situ tunable bubble movement remain elusive because of current complicated tuning strategies on the specific materials. Inspired by natural pitcher plant and rice leaves, here we report a kind of slippery lubricant-infused anisotropic microgrooved surface (SLI-AMGS) fabricated by femtosecond laser direct writing technology and realize the in situ reversible switching between underwater bubble sliding and pinning by unidirectional mechanical tensile strain. Different experimental parameters including lubricant oil film thickness, bubble volumes and laser power have been researched to manifest the relationship with bubble sliding behaviors. The underlying mechanism of in situ reversible switching mainly lies on the decrease of the lubricant oil film thickness during the process of mechanical stretching in which the uniform and stable oil film layer becomes uneven. This uneven lubricant oil film results in an extraordinary increase of contact angle hysteresis and resistance. At last, we demonstrate a real-time dynamic modulation of the underwater bubble on the SLI-AMGS with a changing mechanical tensile strain for several repeatable times in different acid-based environments. Our work manifests great potential applications in widespread fields including underwater bubble microfluidics and microbubble robots.