Lovastatin synergizes with itraconazole against planktonic cells and biofilms of Candida albicans through the regulation on ergosterol biosynthesis pathway.
Yujie ZhouHong YangXuedong ZhouHongke LuoFan TangJin YangGil AlterovitzLei ChengBiao RenPublished in: Applied microbiology and biotechnology (2018)
The increase of fungal infectious diseases and lack of safe and efficacious antifungal drugs result in the urgent need of new therapeutic strategies. Here, we repurposed the lovastatin (LOV) as a synergistic antifungal potentiator to itraconazole (ITZ) against Candida albicans planktonic cells and biofilms in vitro for the first time. Mutants from ergosterol biosynthesis pathway were employed and key gene expression profiles of ergosterol pathway were also measured. LOV single treatment was unable to inhibit C. albicans strains except the ERG3 and ERG11 double mutant. LOV and ITZ combination was capable of inhibiting the C. albicans planktonic cells and biofilms synergistically including the ITZ resistant mutants. The synergistic antifungal ability was stronger in either ERG11 or ERG3 dysfunctional mutants compared to wild type. The combination lost the synergistic activities in the ERG11 and ERG3 double mutant, while it was sensitive to LOV single treatment. The expression of HMG1, encoding HMG-CoA the target of LOV, was significantly upregulated in ERG11 and ERG3 double mutant strain by the treatment of the combination at 1.5 and 3 h. The combination also significantly increased the HMG1 expression in mutants from ergosterol pathway compared with wild type. The ERG11 and ERG3 gene expressions were upregulated by ITZ and its combination with LOV, but seemingly not by LOV single treatment after 1.5 and 3 h. The combination of LOV and ITZ on C. albicans planktonic cells and biofilms highlights its potential clinical practice especially against the azole drug-resistant mutants.
Keyphrases