Login / Signup

DYRK2 promotes chemosensitivity via p53-mediated apoptosis after DNA damage in colorectal cancer.

Yasuhiro TakanoSatomi YogosawaYuta ImaizumiHiroshi KamiokaYumi KanegaeKen EtoKiyotsugu Yoshida
Published in: Cancer science (2023)
Dual-specificity tyrosine-regulated kinase 2 (DYRK2) is a protein kinase that phosphorylates p53-Ser46 and induces apoptosis in response to DNA damage. However, the relationship between DYRK2 expression and chemosensitivity after DNA damage in colorectal cancer has not been well investigated. The aim of the present study was to examine whether DYRK2 could be a novel marker for predicting chemosensitivity after 5-fluorouracil- and oxaliplatin-induced DNA damage in colorectal cancer. Here we showed that DYRK2 knockout decreased the chemosensitivity to 5-fluorouracil and oxaliplatin in p53 wild-type colorectal cancer cells, whereas the chemosensitivity remained unchanged in p53-deficient/mutated colorectal cancer cells. In addition, no significant differences in chemosensitivity to 5-fluorouracil and oxaliplatin between scramble and siDYRK2 p53(-/-) colorectal cancer cells were observed. Conversely, the combination of adenovirus-mediated overexpression of DYRK2 with 5-fluorouracil or oxaliplatin enhanced apoptosis and chemosensitivity through p53-Ser46 phosphorylation in p53 wild-type colorectal cancer cells. Furthermore, DYRK2 knockout decreased chemosensitivity to 5-fluorouracil and oxaliplatin in p53 wild-type xenograft mouse models. Taken together, these findings demonstrated that DYRK2 expression was associated with chemosensitivity to 5-fluorouracil and oxaliplatin in p53 wild-type colorectal cancer, suggesting the importance of evaluating the p53 status and DYRK2 expression as a novel marker in therapeutic strategies for colorectal cancer.
Keyphrases
  • wild type
  • dna damage
  • oxidative stress
  • poor prognosis
  • protein kinase
  • dna repair
  • mouse model
  • transcription factor
  • cell death
  • long non coding rna
  • diabetic rats
  • mass spectrometry
  • high speed
  • single molecule