In this work we propose a novel method for treatment selection based on individual covariate information when the treatment response is multivariate and data are available from a crossover design. Our method covers any number of treatments and it can be applied for a broad set of models. The proposed method uses a rank aggregation technique to estimate an ordering of treatments based on ranked lists of treatment performance measures such as smooth conditional means and conditional probability of a response for one treatment dominating others. An empirical study demonstrates the performance of the proposed method in finite samples.