Login / Signup

Biosynthesized Silver Nanoparticles Inhibit Osteoclastogenesis by Suppressing NF-κB Signaling Pathways.

Yu WuZhong ChengWenhui HuShanwen TangXue ZhouShiwu Dong
Published in: Advanced biology (2023)
Osteoclasts overactivity plays a critical role in the progress of inflammatory bone loss. In addition, ROS can facilitate the formation and function of osteoclasts. Silver nanoparticles (Ag NPs) with ROS scavenging activity are potential candidates for inflammatory bone loss. In this regard, the biosynthetic Ag NPs with low toxicity and high stability by using Flos Sophorae Immaturus extract as the reducing and capping agents are reported. The inflammatory bone loss model is established by injecting LPS. Quantitative reverse transcription-polymerase chain reaction and Western Blot are utilized to determine the expression level of target biomarkers related to osteoclast formation. Ag NPs can significantly reduce the number of TRAP-positive (TRAP + ) cells. In addition, Ag NPs down-regulate the expression of biomarkers relevant to osteoclast formation. Interestingly, Ag NPs can effectively suppress osteoclast formation via down-regulating ROS-mediated phosphorylation of NF-κB pathways. The in vivo study shows that Ag NPs can ameliorate bone density and decrease osteoclast number. Due to these benefits, the constructed Ag NPs can delay the progression of inflammatory bone loss. These findings suggest that Ag NPs are a potential therapeutic agent in the treatment of inflammatory bone loss.
Keyphrases