Login / Signup

Aescin - a natural soap for the formation of lipid nanodiscs with tunable size.

Sabrina HeidtMartin Cramer PedersenNatalie PreisigYvonne HannappelSylvain François PrévostRajeev DattaniLise ArlethThomas Hellweg
Published in: Soft matter (2021)
The saponin β-aescin from the seed extract of the horse chestnut tree Aesculus hippocastanum has demonstrated a beneficial role in clinical therapy which is in part related to its strong interaction with biological membranes. In this context the present work investigates the self-assembly of nm-sized discoidal lipid nanoparticles composed of β-aescin and the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). The discoidal lipid nanoparticles reassemble from small discs into larger discs, ribbons and finally stacks of sheets upon heating from gel-phase to fluid phase DMPC. The morphological transition of the lipid nano-particles is mainly triggered by the phospholipid phase state change. The final morphology depends on the phospholipid-to-saponin ratio and the actual temperature. The study is conducted by small-angle X-ray scattering (SAXS) and transmission (TEM) and freeze fracture electron microscopy (FFEM) are used to cover larger length scales. Two different models, representing a disc and ribbon-like shape are applied to the SAXS data, evaluating possible geometries and molecular mixing of the nano-particles. The stacked sheets are analysed by the Caillé theory.
Keyphrases