Login / Signup

Silencing of tissue factor by antisense deoxyoligonucleotide mitigates thioacetamide-induced liver injury.

Mohamed Sadek Abdel-BakkyG K HelalE M El-SayedA H AlhowailA M MansourK S AlharbiElham AminS AllamS A SalamaA S Saad
Published in: Naunyn-Schmiedeberg's archives of pharmacology (2020)
Increased TF, fibrin, cleaved caspase-3, and cyclin D1 protein expression is seen in zone of central vein after TAA injection compared with vehicle-treated mice. A strong downregulation of RAR-α and RXR-α is seen in TAA-induced liver injury. In addition, histopathological obliteration and pericentral expression of cleaved caspase 3 and cyclin D1 are observed after TAA injection compared with the normal vehicle-treated mice. No changes have been seen in TAA/TF-sense (SC) in whole parameters compared with TAA-treated animals. TAA/TF-antisense (AS)-treated mice show normal expression of all parameters and normal histopathological features when compared with the control mice. In conclusion, this study declares that the strong downregulation of RAR-α and RXR-α may cause liver injury and particularly activation of HSCs in TAA-induced toxicity. TF-AS treatment not only downregulates TF protein expression but also alleviates loss of liver RAR-α and RXR-α and suppresses the activated apoptosis signals in TAA-induced liver toxicity. Finally, TF and RAR-α/RXR-α are important regulatory molecules in TAA induced acute liver injury.
Keyphrases