Meta-analysis reveals drivers of restoration success for oysters and reef community.
Rachel S SmithMax C N CastoraniPublished in: Ecological applications : a publication of the Ecological Society of America (2023)
Restoration aims to reverse global declines of foundation species, but it is unclear how project attributes, the physical setting, and antecedent conditions affect restoration success. In coastal seas worldwide, oyster reef restoration is increasing to counter historic habitat destruction and associated declines in fisheries production and biodiversity. Yet, restoration outcomes are highly variable and the factors that enhance oyster production and nekton abundance and diversity on restored reefs are unresolved. To quantify the drivers of oyster restoration success, we used meta-analysis to synthesize data from 158 restored reefs paired with unstructured habitats along the U.S. Gulf and Atlantic coasts. The average recovery of oyster production was 65% greater in subtidal (vs. intertidal) zones, 173% greater in polyhaline (vs. mesohaline) environments and increased with tidal range, demonstrating that physical conditions can strongly influence the restoration success of foundation species. Additionally, restoration increased the relative abundance and richness of nektonic fishes and invertebrates over time as reefs aged (at least 8 years post-construction). Thus, the restoration benefits for provisioning habitat and enhancing biodiversity accrue over time, highlighting that restoration projects need multiple years to maximize ecosystem functions. Furthermore, long-term monitoring of restored and control sites is needed to assess restoration outcomes and associated drivers. Lastly, our work reveals data constraints for several potential drivers of restoration outcomes, including reef construction material, reef dimensions, harvest pressure and disease prevalence. More experimental and observational studies are needed to target these factors and measure them with consistent methods across studies. Our findings indicate that the assisted recovery of foundation species yields several enhancements to ecosystem services, but such benefits are mediated by time and environmental conditions.